Faculty Submitting: Allison Kelly

Specify here whether "Pre" or "End" of Unit and the Unit #: End Unit 7

LOs: Describe the difference between ionic and covalent bonding and differentiate between ionic and covalent compounds	
	Select all of the ionic compounds
	Correct Answer: MnCl ₂ Be(NO ₃) ₂ NH ₄ Cl
	Wrong Answer: SO ₂ H ₂ O
Read More	https://openstax.org/books/chemistry-2e/pages/7-1-ionic-bonding
Unit 7_ Question 2	Canvas Question Type: Multiple Answer
	Select all of the covalent compounds
	Correct Answer: HC ₂ H ₃ O ₂ NH ₃ CS ₂
	Wrong Answer: KNO ₃ FeO
Read More	https://openstax.org/books/chemistry-2e/pages/7-2-covalent-bonding
Unit 7_ Question 3	Canvas Question Type: Multiple Choice QUESTION GROUP

3a	Which of the following diagrams depicts the bonding in an ionic solid?
34	which of the following diagrams depicts the containg in an folic solid. $\begin{array}{c} \bullet \bullet$
	Correct Answer: A Wrong Answer: B
3b	Which of the following diagrams depicts the bonding in a covalent solid?
	Wrong Answer: A
Read More	https://openstax.org/books/chemistry-2e/pages/7-2-covalent-bonding
Unit 7_	Canvas Question Type: Multiple Choice
Question 4	QUESTION GROUP
4a	Which of the following will have the largest lattice energy?

	Correct Answer: MgO
	Wrong Answers:
	CaO
	RbCl
	CsCl
4b	Which of the following will have the smallest lattice energy?
	Correct Answer: CsCl
	Wrong Answers:
	RbCl
	CaO
	MgO
Read more	https://openstax.org/books/chemistry-2e/pages/7-5-strengths-of-ionic-and-covalent-bonds
Unit 7_	Canvas Question Type: Numeric
Question 5	
	Calculate the ΔH_{rxn} in kJ for the following reaction using the bond energies in <u>Table 7.2</u>
	H H
	$H \rightarrow c \rightarrow H + 2 \circ = 0 \rightarrow 0 = c = 0 + 2 H \rightarrow 0 = H$
	ALT TEXT: The reaction shows a carbon with four single bonds to hydrogen atoms reacting
	with an oxygen molecule where two oxygen atoms are connected by a double bond to form
	carbon dioxide, where two oxygen atoms are connected to a central carbon atom with double
	bonds and water where two hydrogen atoms are connected to a central oxygen atom with a
	single bond.
	[4*413+2*498]-[2*741+4*404]
	-682 kJ
Read more	https://openstax.org/books/chemistry-2e/pages/7-5-strengths-of-ionic-and-covalent-bonds
Vida-	Voutuber https://woutu_bo/ggbOogVEicc
v ideo	routube: <u>nups://youtu.be/gznOop r Eleo</u>
	nttps://drive.googie.com/tile/d/10/NEHCW3/jj0E6A5q12mwzjul0iPYY96K/view?usp=sharing
Unit 7	Canvas Question Type: Numeric
Ouestion 6	
C	

	atoms are connected by a single bond and each X atom has a single bond to Y and a single bond to Z.
	H-zz+xx+(2*xz)
	H: 100-200 kJ/mol All bonds: 200-400 kJ/mol
Read more	https://openstax.org/books/chemistry-2e/pages/7-5-strengths-of-ionic-and-covalent-bonds
Unit 7_ Question 8	Canvas Question Type: Multiple Choice
	Consider a series of bonds, which is most likely to be true
	x - x x = x x = x
	A B C
	ALT TEXT: This shows a series of bonds between two X atoms, Bond A is a single bond, Bond B is a double bond and Bond C is a triple bond
	Correct Answer: A is the longest bond, A is the weakest bond
	Wrong Answers:
	A is the longest bond, A is the strongest bond A is the shortest bond A is the weakest bond
	A is the shortest bond, A is the strongest bond
Read more	https://openstax.org/books/chemistry-2e/pages/7-5-strengths-of-ionic-and-covalent-bonds
Draw Lewis sy	mbols structures and resonance structures: use formal charge to rank likely Lewis structures
Unit 7_ Question 9	Canvas Question Type: Multiple Choice
	Consider the following unknown compound XF ₄ , where X is an element with six valence electrons and an electronegativity of 2.7. What is the most likely Lewis Structure for this compound

	$\begin{array}{c} \vdots \overrightarrow{F} \vdots \overrightarrow{F} \vdots \vdots \overrightarrow{F} \vdots \vdots \overrightarrow{F} \vdots \overrightarrow{F} \vdots \vdots \overrightarrow{F} \vdots \overrightarrow{F} \vdots \vdots \overrightarrow{F} \cdots \overrightarrow{F} \vdots \overrightarrow{F} \vdots \overrightarrow{F} \cdots \overrightarrow{F} $ }
	Correct Answer: 3
	Wrong Answers: 1,2 or 4
Read more	https://openstax.org/books/chemistry-2e/pages/7-3-lewis-symbols-and-structures
Video	Youtube: <u>https://youtu.be/InAHUEbW7w0</u>
	https://drive.google.com/file/d/1kpwWBcYwAosdnHTFabeJ7hZH5p0i84IX/view?usp=sharing
Unit 7_	Canvas Question Type: Fill in Multiple Blanks
	Assign the formal charge for each atom in the following structure. Be sure to include $+$ or $-$ as necessary (e.g. $+1$ or -2)
	$ \begin{pmatrix} H \\ H \\ H \end{pmatrix}^{+} $ ALT TEXT: This shows an ion with an overall +1 charge. Where a central nitrogen atom is bond to four hydrogens via single bond

	N [+1]
	H [0]
Read more	https://openstax.org/books/chemistry-2e/pages/7-4-formal-charges-and-resonance
Unit 7_ Question 11	Canvas Question Type: Fill in Multiple Blanks
	Assign the formal charge for each atom in the following structure
	$\begin{bmatrix} 1 & & 6 \\ H & 0 & : \\ - & - & - & - & - \\ - & - & - & - & -$
	ALT TEXT: This structure shows a carbon that is has three single bonds to hydrogen, bond to another carbon via a single bond. The second carbon is double bonded to an oxygen atom with two lone pairs and single bonded to an oxygen with three lone pairs.
	Atom 1: [one]
	Atom 2: [two]
	Atom 3: [three]
	Atom 4: [four]
	Atom 5: [five]
	Atom 6: [six]
	Atom 7: [seven]
Read more	https://openstax.org/books/chemistry-2e/pages/7-4-formal-charges-and-resonance
Video	Youtube: <u>https://youtu.be/GG76wUp2A9s</u> Gdrive: <u>https://drive.google.com/file/d/1h0nYltxj4-</u> <u>JFVHrWbz_SJhC2s4xzSfHt/view?usp=sharing</u>

Unit 7_	Canvas Question Type: Numeric
Question 12	
	How many long noirs are on the control stars in CH O?
	How many ione pairs are on the central atom in CH_2O ?
	0
Read more	https://openstax.org/books/chemistry-2e/pages/7-3-lewis-symbols-and-structures
Unit 7_	Canvas Question Type: Multiple Choice
Question 13	
	kank the resonance structures below based on now likely they are to contribute to the resonance
	nyona
	$\begin{bmatrix} : \ddot{O} & \vdots & \ddot{O} : \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} \xrightarrow{-} \begin{bmatrix} : \ddot{O} & \vdots & \ddot{O} & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \xrightarrow{-} \begin{bmatrix} : \ddot{O} & \vdots & \ddot{O} & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots$
	Structure 1 Structure 2 Structure 3
	ALT TEXT: Each structure shows three oxygen atoms bond to chlorine, with a lone pair on the chlorine. In the first structure, two of the oxygens on the left and center have a double bond and two lone pairs, the right oxygen has a single bond and three lone pairs. In the second structure, the left oxygen has a single bond and three lone pairs, the center and right oxygen have double bonds and two lone pairs. In the third structure, the center oxygen has a single bond and three lone pairs, and the left and right oxygen has double bonds and two lone pairs.
	Correct Answer: They are all equal contributors
	Wrong Answer: Structure 1 > Structure 2 > Structure 3 Structure 3 > Structure 2 > Structure 1 Structure 1 > Structure 3 > Structure 2 Structure 3 > Structure 1 > Structure 2 Structure 2 > Structure 1 > Structure 3 Structure 2 > Structure 3 > Structure 1
Read more	https://openstax.org/books/chemistry-2e/pages/7-4-formal-charges-and-resonance
Unit 7	Canvas Ouestion Type: Multiple Choice
Question 14	
	Which of the following Lewis structures is less likely?

	$\ddot{O} = C = \ddot{O}$ $\vdots \vdots \vdots \vdots \vdots \vdots \vdots = C = O$: Structure 1 Structure 2
	ALT TEXT: Structure one shows two oxygens connected by double bonds to a central carbon, each oxygen has two lone pairs. Structure two shows two oxygens connected to a central carbon; the left oxygen has a single bond and three lone pairs, the right oxygen has a triple bond and one lone pair.
	Correct Answer: Structure 2 is less likely because it does not minimize formal charge Wrong Answers: Structure 2 is less likely because it breaks the octet rule Structure 1 is less likely because it breaks the octet rule Structure 1 is less likely because it does not minimize formal charge
Read more	https://openstax.org/books/chemistry-2e/pages/7-4-formal-charges-and-resonance
Use VSEPR to determine atomic orbital hybridization, predict electron pair and molecular geometry for molecules and ions	
Unit 7_ Question 15	Canvas Question Type: Multiple Choice
	Rank the following species in terms of increasing N—H bond angle NH ₄ ⁺ , NH ₂ ⁻ , NH ₃
	Correct Answer: $NH_2^- < NH_3 < NH_4^+$ Wrong Answers: $NH_4^+ < NH_3 < NH_2^-$ $NH_3 < NH_4^+ < NH_2^-$ $NH_3 < NH_2^- < NH_4^+$ $NH_4^+ < NH_2^- < NH_3$ $NH_2^- < NH_4^+ < NH_3$
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
Unit 7_ Question 16	Canvas Question Type: Multiple DropDowns
	Identify the geometry and bond angles for the following unknown compound:

	XF ₅ , where X is an element below the third period, with seven valence electrons and an
	electronegativity of 2.9
	Geometry: [dropone]
	Bond Angle: [droptwo]
	Dropone: square pyramidal
	linear
	trigonal planar
	bent
	tetrahedral
	trigonal pyramidal
	trigonal bipyramidal
	see-saw
	T-shaped
	octahedral
	square planar
	Droptwo: < 90°
	180°
	120°
	<120°
	109.5°
	<109.5°
	120°, 90°
	<120°, <90°
	90°
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
Unit 7	Canvas Ouestion Type: Multiple DropDowns
Question 17	
_	
	Identify the geometry and bond angles for the following unknown compound:
	XF_4 , where X is an element below the third period, with six valence electrons and an
	electronegativity of 2.6
	Geometry: [dropone]
	Bond Angle: [drontwo]

	Dropone: see-saw
	linear
	trigonal planar
	hont
	tetrahedral
	trigonal pyramidal
	trigonal bipyramidal
	T-shaped
	octahedral
	square planar
	square pyramidal
	square pyramaar
	Droptwo: <120°, <90°
	180°
	120°
	120 <120°
	<109.5°
	120°, 90°
	90°
	<90°
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
Unit 7_	Canvas Question Type: Multiple DropDowns
Question 18	
	Identify the geometry and bond angles for the following unknown compound:
	$XOCl_2$, where X is an element with four valence electrons and an electronegativity of 2.4
	Geometry: [dropone]
	Bond Angle: [droptwo]
	Dropone: trigonal planar
	Linear
	trigonal pyramidal
	bent
	tetrahedral
	trigonal binyramidal
	1-shaped
	octahedral

	$\begin{array}{c} X = \left(\begin{array}{c} X \\ Y \end{array}\right) \\ Y \end{array} \\ Y \\ Y$
	Trigonal Pyramical: A central X atom with three Y bonds, one in plane and two in and out of plane See-Saw: A central X atom with four Y bonds, two in plane 180 degrees from eachother and two in and out of plane Cross: A central X atom with four Y bonds 90 degrees all in the same plane
19b	What is the geometry for an unknown molecule, XCl_4 , where X is an element with 6 valence electrons and an electronegativity of 2.6
	Correct Answer: Y X Y Y Wrong Answers:

	180°
	<120°
	109.5°
	<109.5°
	120°, 90°
	90°
	<90°
	<120°, <90°
	dropfour: sp2
	sp, sp3, sp3d, sp3d2
	dropfive: 109.5°
	180°
	<120°
	120°
	<109.5°
	120°, 90°
	90°
	<90°
	<120°, <90°
	dropsix: sp3
	sp, sp2, sp3d, sp3d2
	Dropseven: <109.5
	180°
	<120°
	120°
	109.5°
	120°, 90°
	90°
	<90°
	<120°, <90°
	dropeight: sp3
	sp, sp2, sp3d, sp3d2
20b	Assign the hybridization and bond angles at each of the labelled atoms

	dropthree: <109.5°
	180°
	120°
	109.5°
	<120°
	120°, 90°
	90°
	<90°
	<120°, <90°
	dropfour: sp3
	sp, sp2, sp3d, sp3d2
	dropfive: <109.5°
	180°
	120°
	<120°
	109.5°
	120°, 90°
	90°
	<90°
	<120°, <90°
	dropsix: sp3
	sp, sp2, sp3d, sp3d2
	Dropseven: 109.5
	180°
	120°
	<120°
	<109.5°
	120°, 90°
	90°
	<90°
	<120°, <90°
	dropeight: sp3
	sp, sp2, sp3d, sp3d2
20c	Assign the hybridization and bond angles at atoms 1-4

$H = \begin{pmatrix} H \\ H$
Dropone: <109.5°
180° 120°
<120°
109.5°
120°, 90° 90°
<90°
<120°, <90°
droptwo: sp3
sp, sp2, sp3d, sp3d2
dropthree: 120°
180°
<109.5° <120°
109.5°

	How many sigma (σ) and pi (π) bonds are in the following molecule?
Unit 7_ Question 21	Canvas Question Type: Fill in Multiple Blank
Read more	https://openstax.org/books/chemistry-2e/pages/8-2-hybrid-atomic-orbitals
	sp, sp2, sp3d, sp3d2
	dropeight: sp3
	<120°, <90°
	90° <90°
	120°, 90°
	<120 <109.5°
	120° <120°
	180°
	Dropseven: 109.5
	sp, sp2, sp3d, sp3d2
	dropsix: sp3
	<120°, <90°
	<90°
	90°
	<109.5° 120° 90°
	<120°
	120°
	180°
	dropfive: 109.5°
	sp, sp3, sp3d, sp3d2
	dropfour: sp2
	<120°, <90°
	<00°
	120°, 90° 90°
	120° 00°

molecules

Unit 7_ Question 23	Canvas Question Type: Multiple Answer QUESTION GROUP
23a	Select all of the polar bonds
	Correct Answers:
	H—Cl
	Н—О
	S—O
	Wrong Answers:
	F—F
	С—Н
	Р—Н

23b	Select all of the nonpolar bonds
	Correct Answers:
	F—F
	С—Н
	Р—Н
	Wrong Answers:
	H—Cl
	Н—О
	SO
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
Unit 7_	Canvas Question Type: Multiple Drop Down
Question 24	
	Use Figure 7.6 to indicate which atom in each polar covalent hand would have the partial
	negative charge and which would have the partial positive charge
	negative entage and which we are partial positive entage
	[dropone] H—Cl [droptwo]
	[dropthree] Br—C [dropfour]
	[dropfive] P—O [dropsix]
	[dropseven] F—N [dropeight]
	Dropone: δ+
	δ-
	Drog Truck S
	S_{\pm}
	DropThree: δ-
	δ^+
	Dronfour: $\delta +$
	δ-
	Drop Give: 8+
	δ-
	Dropsix: δ-
	δ^+
	Dropseven: δ-
	δ+

	Dropeight: δ+
	δ-
Pood more	https://opanstay.org/books/chamistry_20/pages/7_6_molecular_structure_and_polarity
Read more	https://openstax.org/books/chemistry-2e/pages/7-0-molecular-structure-and-polarity
Unit 7_	Canvas Question Type: Multiple Answer
Question 25	
	Which of the following molecules will have a dipole moment
	Correct Answers:
	H ₂ O
	NH ₃
	CH ₂ O
	Wrong Answers
	XeF ₂
	CH_4
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
Unit 7_	Canvas Question Type: Multiple Choice
Question 26	
	Consider the unknown compound JO_2 , where J is an unknown element with 4 valence electrons
	and an electronegativity of 2.4. Determine whether this molecule is polar or nonpolar.
	Correct Answer: nonpolar
	wrong Answer: polar
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity