Faculty Submitting: Allison Kelly
Specify here whether "Pre" or "End" of Unit and the Unit \#: End Unit 7

LOs:	
Describe the difference between ionic and covalent bonding and differentiate between ionic and covalent compounds	
Unit 7_ Question 1	Canvas Question Type: Multiple Answer
	Select all of the ionic compounds Correct Answer: MnCl_{2} $\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}$ $\mathrm{NH}_{4} \mathrm{Cl}$ Wrong Answer: $\begin{aligned} & \mathrm{SO}_{2} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Read More	https://openstax.org/books/chemistry-2e/pages/7-1-ionic-bonding
$\begin{gathered} \text { Unit 7_ } \\ \text { Question } 2 \end{gathered}$	Canvas Question Type: Multiple Answer
	Select all of the covalent compounds Correct Answer: $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ NH_{3} CS_{2} Wrong Answer: KNO_{3} FeO
Read More	https://openstax.org/books/chemistry-2e/pages/7-2-covalent-bonding
Unit 7_ Question 3	Canvas Question Type: Multiple Choice QUESTION GROUP

3a	Which of the following diagrams depicts the bonding in an ionic solid? A B ALT TEXT: The figure shows two molecular depictions in boxes. In Box A there are two types of atoms, one with a positive charge and one with a negative charge, they are arranged in an orderly fashion with alternating charges.
	Correct Answer: A Wrong Answer: B
3b	Which of the following diagrams depicts the bonding in a covalent solid? A B ALT TEXT: The figure shows two molecular depictions in boxes. In Box A there are two types of atoms, one with a positive charge and one with a negative charge, they are arranged in an orderly fashion with alternating charges.
	Correct Answer: B Wrong Answer: A
Read More	https://openstax.org/books/chemistry-2e/pages/7-2-covalent-bonding
Unit 7_ Question 4	Canvas Question Type: Multiple Choice QUESTION GROUP
4a	Which of the following will have the largest lattice energy?

	Correct Answer: MgO Wrong Answers: CaO RbCl CsCl
4b	Which of the following will have the smallest lattice energy?
	Correct Answer: CsCl Wrong Answers: RbCl CaO MgO
Read more	https://openstax.org/books/chemistry-2e/pages/7-5-strengths-of-ionic-and-covalent-bonds
Unit 7 Question 5	Canvas Question Type: Numeric
	Calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ in kJ for the following reaction using the bond energies in Table 7.2 ALT TEXT: The reaction shows a carbon with four single bonds to hydrogen atoms reacting with an oxygen molecule where two oxygen atoms are connected by a double bond to form carbon dioxide, where two oxygen atoms are connected to a central carbon atom with double bonds and water where two hydrogen atoms are connected to a central oxygen atom with a single bond.
	$\begin{aligned} & {[4 * 415+2 * 498]-[2 * 741+4 * 464]} \\ & -682 \mathrm{~kJ} \end{aligned}$
Read more	https://openstax.org/books/chemistry-2e/pages/7-5-strengths-of-ionic-and-covalent-bonds
Video	Youtube: https://youtu.be/gzhOopYEieo Gdrive: https://drive.google.com/file/d/1OMFHCW37ij0E6A5qTZmwzjul0iPYY96K/view?usp=sharing
$\begin{gathered} \text { Unit 7_ } \\ \text { Question } 6 \end{gathered}$	Canvas Question Type: Numeric

	Calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ in kJ for the following reaction using the bond energies in Table 7.2 ALT TEXT: The reaction shows a carbon with three single bonds to hydrogen atoms and one single bond to oxygen which also has a single bond to hydrogen. This reacts to form a molecule containing carbon with a double bond to oxygen and two single bonds to hydrogen atoms, and a hydrogen molecule that is a single bond between two hydrogen atoms.
	$[3 * 415+350+464]-[2 * 415+741+436]$ 52 kJ
Read more	https://openstax.org/books/chemistry-2e/pages/7-5-strengths-of-ionic-and-covalent-bonds
$\begin{gathered} \text { Unit 7_ } \\ \text { Question } 7 \end{gathered}$	Canvas Question Type: Formula
	The enthalpy of reaction for the following reaction is $[\mathrm{H}] \mathrm{kJ} / \mathrm{mol}$. Given the bond energies below, what is the bond energy of the $\mathrm{X}=\mathrm{X}$ bond? ALT TEXT: The figure shows a reaction. A molecule in which Y is connected to X by a single bond which is connected to X by a double bond which is connected to Y by a single bond reacts with a molecule that is to Z atoms connected by a single bond. It forms a molecule where to X

	atoms are connected by a single bond and each X atom has a single bond to Y and a single bond to Z .
	H-zz+xx+(2*xz) H: 100-200 kJ/mol All bonds: $200-400 \mathrm{~kJ} / \mathrm{mol}$
Read more	https://openstax.org/books/chemistry-2e/pages/7-5-strengths-of-ionic-and-covalent-bond
Unit 7_ Question 8	Canvas Question Type: Multiple Choice
	Consider a series of bonds, which is most likely to be true A B C ALT TEXT: This shows a series of bonds between two X atoms, Bond A is a single bond, Bond B is a double bond and Bond C is a triple bond
	Correct Answer: A is the longest bond, A is the weakest bond Wrong Answers: A is the longest bond, A is the strongest bond A is the shortest bond, A is the weakest bond A is the shortest bond, A is the strongest bond
Read more	https://openstax.org/books/chemistry-2e/pages/7-5-strengths-of-ionic-and-covalent-bonds
Draw Lewis symbols, structures and resonance structures; use formal charge to rank likely Lewis structures	
$\begin{gathered} \text { Unit 7_ } \\ \text { Question } 9 \end{gathered}$	Canvas Question Type: Multiple Choice
	Consider the following unknown compound XF_{4}, where X is an element with six valence electrons and an electronegativity of 2.7. What is the most likely Lewis Structure for this compound

	 1 2 3 4 ALT TEXT: Lewis structure 1 is X bonded to four fluorine atoms via single bonds with three lone pairs on each fluorine atom. Lewis structure 2 is X bonded to three fluorine atoms via single bonds and one fluorine atom via a double bond; all fluorine atoms have three lone pairs. Lewis structure 3 is X bonded to four fluorine atoms via single bonds with three lone pairs on each fluorine atom and one lone pair on the X . Lewis structure 4 is X bonded to four fluorine atoms via single bonds; three fluorine atoms have three lone pairs and one has four lone pairs.
	Correct Answer: 3 Wrong Answers: 1,2 or 4
Read more	https://openstax.org/books/chemistry-2e/pages/7-3-lewis-symbols-and-structures
Video	Youtube: https://youtu.be/InAHUEbW7w0 Gdrive: https://drive.google.com/file/d/1kpwWBcYwAosdnHTFabeJ7hZH5p0i84IX/view?usp=sharing
$\begin{gathered} \text { Unit 7_ } \\ \text { Question } 10 \end{gathered}$	Canvas Question Type: Fill in Multiple Blanks
	Assign the formal charge for each atom in the following structure. Be sure to include + or - as necessary (e.g. +1 or -2) ALT TEXT: This shows an ion with an overall +1 charge. Where a central nitrogen atom is bond to four hydrogens via single bond

	$\begin{aligned} & \mathrm{N}[+1] \\ & \mathrm{H}[0] \end{aligned}$
Read more	https://openstax.org/books/chemistry-2e/pages/7-4-formal-charges-and-resonance
$\begin{gathered} \text { Unit 7_ } \\ \text { Question } 11 \end{gathered}$	Canvas Question Type: Fill in Multiple Blanks
	Assign the formal charge for each atom in the following structure ALT TEXT: This structure shows a carbon that is has three single bonds to hydrogen, bond to another carbon via a single bond. The second carbon is double bonded to an oxygen atom with two lone pairs and single bonded to an oxygen with three lone pairs. Atom 1: [one] Atom 2: [two] Atom 3: [three] Atom 4: [four] Atom 5: [five] Atom 6: [six] Atom 7: [seven]
Read more	https://openstax.org/books/chemistry-2e/pages/7-4-formal-charges-and-resonance
Video	Youtube: https://youtu.be/GG76wUp2A9s Gdrive: https://drive.google.com/file/d/1hOnYltxj4JFVHrWbz SJhC2s4xzSfHt/view? usp=sharing

Unit 7_ Question 12	Canvas Question Type: Numeric
	How many lone pairs are on the central atom in $\mathrm{CH}_{2} \mathrm{O}$? 0
Read more	https://openstax.org/books/chemistry-2e/pages/7-3-lewis-symbols-and-structures
$\begin{gathered} \text { Unit 7_ } \\ \text { Question } 13 \end{gathered}$	Canvas Question Type: Multiple Choice
	Rank the resonance structures below based on how likely they are to contribute to the resonance hybrid ALT TEXT: Each structure shows three oxygen atoms bond to chlorine, with a lone pair on the chlorine. In the first structure, two of the oxygens on the left and center have a double bond and two lone pairs, the right oxygen has a single bond and three lone pairs. In the second structure, the left oxygen has a single bond and three lone pairs, the center and right oxygen have double bonds and two lone pairs. In the third structure, the center oxygen has a single bond and three lone pairs, and the left and right oxygen has double bonds and two lone pairs.
	Correct Answer: They are all equal contributors Wrong Answer: Structure $1>$ Structure $2>$ Structure 3 Structure $3>$ Structure $2>$ Structure 1 Structure $1>$ Structure $3>$ Structure 2 Structure $3>$ Structure $1>$ Structure 2 Structure $2>$ Structure $1>$ Structure 3 Structure $2>$ Structure $3>$ Structure 1
Read more	https://openstax.org/books/chemistry-2e/pages/7-4-formal-charges-and-resonance
Unit 7_ Question 14	Canvas Question Type: Multiple Choice
	Which of the following Lewis structures is less likely?

	 Structure 1 $: \ddot{0}-\mathrm{c} \equiv \mathrm{O}:$ Structure 2 ALT TEXT: Structure one shows two oxygens connected by double bonds to a central carbon, each oxygen has two lone pairs. Structure two shows two oxygens connected to a central carbon; the left oxygen has a single bond and three lone pairs, the right oxygen has a triple bond and one lone pair.
	Correct Answer: Structure 2 is less likely because it does not minimize formal charge Wrong Answers: Structure 2 is less likely because it breaks the octet rule Structure 1 is less likely because it breaks the octet rule Structure 1 is less likely because it does not minimize formal charge
Read more	https://openstax.org/books/chemistry-2e/pages/7-4-formal-charges-and-resonance
Use VSEPR to determine atomic orbital hybridization, predict electron pair and molecular geometry for molecules and ions	
Unit 7_ Question 15	Canvas Question Type: Multiple Choice
	Rank the following species in terms of increasing $\mathrm{N}-\mathrm{H}$ bond angle $\mathrm{NH}_{4}^{+}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$
	Correct Answer: $\mathrm{NH}_{2}{ }^{-}<\mathrm{NH}_{3}<\mathrm{NH}_{4}{ }^{+}$ Wrong Answers: $\begin{aligned} & \mathrm{NH}_{4}{ }^{+}<\mathrm{NH}_{3}<\mathrm{NH}_{2}^{-} \\ & \mathrm{NH}_{3}<\mathrm{NH}_{4}{ }^{+}<\mathrm{NH}_{2}^{-} \\ & \mathrm{NH}_{3}<\mathrm{NH}_{2}{ }^{-}<\mathrm{NH}_{4}^{+} \\ & \mathrm{NH}_{4}{ }^{+}<\mathrm{NH}_{2}<\mathrm{NH}_{3} \\ & \mathrm{NH}_{2}{ }^{-}<\mathrm{NH}_{4}{ }^{+}<\mathrm{NH}_{3} \end{aligned}$
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
Unit 7_ Question 16	Canvas Question Type: Multiple DropDowns
	Identify the geometry and bond angles for the following unknown compound:

	XF5, where X is an element below the third period, with seven valence electrons and an electronegativity of 2.9 Geometry: [dropone] Bond Angle: [droptwo]
	Dropone: square pyramidal linear trigonal planar bent tetrahedral trigonal pyramidal trigonal bipyramidal see-saw T-shaped octahedral square planar
	Droptwo: <90 180° 120° $<120^{\circ}$ 109.5° $<109.5^{\circ}$ $120^{\circ}, 90^{\circ}$ $<120^{\circ},<90^{\circ}$ 90°
Question 17	Read more Canvas Question Type: Multiple DropDowns
https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity	

	Dropone: see-saw linear trigonal planar bent tetrahedral trigonal pyramidal trigonal bipyramidal T-shaped octahedral square planar square pyramidal Droptwo: $<120^{\circ},<90^{\circ}$ 180° 120° $<120^{\circ}$ 109.5° $<109.5^{\circ}$ $120^{\circ}, 90^{\circ}$ 90° $<90^{\circ}$
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
$\begin{gathered} \text { Unit 7_ } \\ \text { Question } 18 \end{gathered}$	Canvas Question Type: Multiple DropDowns
	Identify the geometry and bond angles for the following unknown compound: XOCl_{2}, where X is an element with four valence electrons and an electronegativity of 2.4 Geometry: [dropone] Bond Angle: [droptwo]
	Dropone: trigonal planar Linear trigonal pyramidal bent tetrahedral trigonal bipyramidal T-shaped octahedral

	square planar square pyramidal see-saw
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
$\begin{gathered} \text { Unit 7_ } \\ \text { Question } 19 \end{gathered}$	Canvas Question Type: Multiple Choice QUESTION GROUP: Pick 2
19a	What is the geometry for an unknown molecule, XH_{4}, where X is an element with 4 valence electrons and an electronegativity of 2.6
	Correct Answer: Tetrahedal: A central X atom with two Y bonds in plane and one out of plane and one into the plane Wrong Answers

	Trigonal Pyramical: A central X atom with three Y bonds, one in plane and two in and out of plane See-Saw: A central X atom with four Y bonds, two in plane 180 degrees from eachother and two in and out of plane Cross: A central X atom with four Y bonds 90 degrees all in the same plane
19b	What is the geometry for an unknown molecule, XCl_{4}, where X is an element with 6 valence electrons and an electronegativity of 2.6
	Correct Answer: Wrong Answers:

19c	What is the geometry for an unknown molecule, XS_{2}, where X is an element with 4 valence electrons and an electronegativity of 2.4
	Correct Answer: $Y-X-Y$ Wrong Answers: $\mathrm{Y}-\ddot{\mathrm{x}}-\mathrm{Y}-\mathrm{Y}$
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
Describe sigma and pi bonding in hybrid and molecular orbitals. Understand the differences between valence bond and molecular orbital theory.	
$\begin{gathered} \hline \text { Unit 7_ } \\ \text { Question } 20 \end{gathered}$	Canvas Question Type: Multiple DropDowns QUESTION GROUP, PICK TWO
20a	Assign the hybridization and bond angles at each of the labelled atoms

Dropone: 120°
180°
$<120^{\circ}$
109.5°
$<1095^{\circ}$
$120^{\circ}, 90^{\circ}$
90°
$<90^{\circ}$
$<120^{\circ}$, $<90^{\circ}$

	$\begin{array}{\|l\|} \hline 180^{\circ} \\ <120^{\circ} \\ 109.5^{\circ} \\ <109.5^{\circ} \\ 120^{\circ}, 90^{\circ} \\ 90^{\circ} \\ <90^{\circ} \\ <120^{\circ},<90^{\circ} \\ \text { dropfour: sp2 } \\ \text { sp, sp3, sp3d, sp3d2 } \end{array}$ dropfive: 109.5° 180° $<120^{\circ}$ 120° $<109.5^{\circ}$ $120^{\circ}, 90^{\circ}$ 90° $<90^{\circ}$ $<120^{\circ}$, $<90^{\circ}$ dropsix: sp3 sp, sp2, sp3d, sp3d2 Dropseven: <109.5 180° $<120^{\circ}$ 120° 109.5° $120^{\circ}, 90^{\circ}$ 90° $<90^{\circ}$ $<120^{\circ},<90^{\circ}$ dropeight: sp3 sp, sp2, sp3d, sp3d2
20b	Assign the hybridization and bond angles at each of the labelled atoms

	 methyl anthranilate Atom 1: Bond Angle: [Dropone] Hybridization: [Droptwo] Atom 2: Bond Angle: [Dropthree] Hybridization: [DropFour] Atom 3: Bond Angle: [Dropfive] Hybridization: [Dropsix] Atom 4: Bond Angle: [Dropseven] Hybridization: [Dropeight]
	```Dropone: \(120^{\circ}\) \(180^{\circ}\) \(<120^{\circ}\) \(109.5^{\circ}\) \(<109.5^{\circ}\) \(120^{\circ}, 90^{\circ}\) \(90^{\circ}\) \(<90^{\circ}\) \(<120^{\circ},<90^{\circ}\) droptwo: sp2 sp, sp3, sp3d, sp3d2```


	```dropthree: <109.5 \({ }^{\circ}\) \(180^{\circ}\) \(120^{\circ}\) \(109.5^{\circ}\) \(<120^{\circ}\) \(120^{\circ}, 90^{\circ}\) \(90^{\circ}\) \(<90^{\circ}\) \(<120^{\circ}\), \(<90^{\circ}\) dropfour: sp3 sp, sp2, sp3d, sp3d2 dropfive: <109.5 \({ }^{\circ}\) \(180^{\circ}\) \(120^{\circ}\) \(<120^{\circ}\) \(109.5^{\circ}\) \(120^{\circ}, 90^{\circ}\) \(90^{\circ}\) \(<90^{\circ}\) \(<120^{\circ},<90^{\circ}\) dropsix: sp3 sp, sp2, sp3d, sp3d2 Dropseven: 109.5 \(180^{\circ}\) \(120^{\circ}\) \(<120^{\circ}\) \(<109.5^{\circ}\) \(120^{\circ}, 90^{\circ}\) \(90^{\circ}\) \(<90^{\circ}\) \(<120^{\circ},<90^{\circ}\) dropeight: sp3 sp, sp2, sp3d, sp3d2```
20c	Assign the hybridization and bond angles at atoms 1-4

	 Atom 1: Bond Angle: [Dropone] Hybridization: [Droptwo] Atom 2: Bond Angle: [Dropthree] Hybridization: [DropFour] Atom 3: Bond Angle: [Dropfive] Hybridization: [Dropsix] Atom 4: Bond Angle: [Dropseven] Hybridization: [Dropeight]
	```Dropone: <109.5 \({ }^{\circ}\) \(180^{\circ}\) \(120^{\circ}\) \(<120^{\circ}\) \(109.5^{\circ}\) \(120^{\circ}, 90^{\circ}\) \(90^{\circ}\) \(<90^{\circ}\) \(<120^{\circ},<90^{\circ}\) droptwo: sp3 sp, sp2, sp3d, sp3d2 dropthree: \(120^{\circ}\) \(180^{\circ}\) \(<109.5^{\circ}\) \(<120^{\circ}\) \(109.5^{\circ}\)```


	```\(120^{\circ}, 90^{\circ}\) \(90^{\circ}\) \(<90^{\circ}\) \(<120^{\circ},<90^{\circ}\) dropfour: sp2 sp, sp3, sp3d, sp3d2 dropfive: \(109.5^{\circ}\) \(180^{\circ}\) \(120^{\circ}\) \(<120^{\circ}\) \(<109.5^{\circ}\) \(120^{\circ}, 90^{\circ}\) \(90^{\circ}\) \(<90^{\circ}\) \(<120^{\circ},<90^{\circ}\) dropsix: sp3 sp, sp2, sp3d, sp3d2 Dropseven: 109.5 \(180^{\circ}\) \(120^{\circ}\) \(<120^{\circ}\) \(<109.5^{\circ}\) \(120^{\circ}, 90^{\circ}\) \(90^{\circ}\) \(<90^{\circ}\) \(<120^{\circ},<90^{\circ}\) dropeight: sp3 \(\mathrm{sp}, \mathrm{sp} 2, \mathrm{sp} 3 \mathrm{~d}, \mathrm{sp} 3 \mathrm{~d} 2\)```
Read more	https://openstax.org/books/chemistry-2e/pages/8-2-hybrid-atomic-orbitals
Question 21	Canvas Question Type: Fill in Multiple Blank
	How many sigma (σ) and pi (π) bonds are in the following molecule?

Sigma: [28, twenty eight]

	 methyl anthranilate Sigma: [twenty] Pi: [four]
Read more	https://openstax.org/books/chemistry-2e/pages/8-2-hybrid-atomic-orbitals
Use the concept of electronegativity to predict bond covalency, bond polarity, and the dipole moment of molecules	
Unit 7_ Question 23	Canvas Question Type: Multiple Answer QUESTION GROUP
23a	Select all of the polar bonds
	Correct Answers: $\mathrm{H}-\mathrm{Cl}$ $\mathrm{H}-\mathrm{O}$ $\mathrm{S}-\mathrm{O}$ Wrong Answers: F-F $\mathrm{C}-\mathrm{H}$ $\mathrm{P}-\mathrm{H}$

23b	Select all of the nonpolar bonds
	Correct Answers: F-F $\mathrm{C}-\mathrm{H}$ P—H Wrong Answers: $\mathrm{H}-\mathrm{Cl}$ $\mathrm{H}-\mathrm{O}$ S-O
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
Unit 7_ Question 24	Canvas Question Type: Multiple Drop Down
	Use Figure 7.6 to indicate which atom in each polar covalent bond would have the partial negative charge and which would have the partial positive charge [dropone] $\mathrm{H}-\mathrm{Cl}$ [droptwo] [dropthree] $\mathrm{Br}-\mathrm{C}$ [dropfour] [dropfive] P—O [dropsix] [dropseven] F-N [dropeight]
	Dropone: $\delta+$ δ - DropTwo: δ - $\delta+$ DropThree: δ - $\delta+$ Dropfour: $\delta+$ δ - Drop Give: $\delta+$ δ - Dropsix: δ - $\delta+$ Dropseven: δ - $\delta+$

	Dropeight: δ^{+} δ -
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
$\begin{gathered} \hline \text { Unit 7_ } \\ \text { Question } 25 \end{gathered}$	Canvas Question Type: Multiple Answer
	Which of the following molecules will have a dipole moment
	Correct Answers: $\mathrm{H}_{2} \mathrm{O}$ NH_{3} $\mathrm{CH}_{2} \mathrm{O}$ Wrong Answers XeF_{2} CH_{4}
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity
$\begin{gathered} \hline \text { Unit 7_ } \\ \text { Question 26 } \end{gathered}$	Canvas Question Type: Multiple Choice
	Consider the unknown compound JO_{2}, where J is an unknown element with 4 valence electrons and an electronegativity of 2.4 . Determine whether this molecule is polar or nonpolar.
	Correct Answer: nonpolar wrong Answer: polar
Read more	https://openstax.org/books/chemistry-2e/pages/7-6-molecular-structure-and-polarity

